104 research outputs found

    Resilient gossip-inspired all-reduce algorithms for high-performance computing - Potential, limitations, and open questions

    Get PDF
    We investigate the usefulness of gossip-based reduction algorithms in a high-performance computing (HPC) context. We compare them to state-of-the-art deterministic parallel reduction algorithms in terms of fault tolerance and resilience against silent data corruption (SDC) as well as in terms of performance and scalability. New gossip-based reduction algorithms are proposed, which significantly improve the state-of-the-art in terms of resilience against SDC. Moreover, a new gossip-inspired reduction algorithm is proposed, which promises a much more competitive runtime performance in an HPC context than classical gossip-based algorithms, in particular for low accuracy requirements.This work has been partially funded by the Spanish Ministry of Science and Innovation [contract TIN2015-65316]; by the Government of Catalonia [contracts 2014-SGR-1051, 2014-SGR-1272]; by the RoMoL ERC Advanced Grant [grant number GA 321253] and by the Vienna Science and Technology Fund (WWTF) through project ICT15-113.Peer ReviewedPostprint (author's final draft

    The intellect, mobility and epistemic positioning in doing comparisons and comparative education

    Get PDF
    This article offers a reflexive analysis and discussion on the relationship between academic mobility and comparative knowledge creation. It argues that what constitutes ‘comparative knowledge’ is not solely Wissenschaften but more often entwined with Weltanschauungen, derived from lived experiences – as exemplified in the biographic narratives of some of the major intellects. It reviews the notions of the ‘gaze’ and the concepts of the Other and Homeworld/Alienworld as epistemic positioning in doing comparative education. In the framework of phenomenological thinking, the paper discusses the intimate relationship between comparative knowledge and positional knowledge

    Identification of Degraded Land in the Canary Islands; Tests and Reviews

    Get PDF
    Degraded Land is an area that either by natural causes (fires, floods, storms or volcanic eruptions) or more by direct or indirect causes of human action, has been altered or modified from its natural state. Restoration is an activity that initiates or accelerates the recovery of an ecosystem. It can be defined as the set of actions taken in order to reverse or reduce the damage caused in the territory. In the case of the Canary Islands there is a high possibility for the territory to suffer processes that degrade the environment, given that the islands are very fragile ecosystems. Added to this they are territories isolated from the continent, which complicates the process of restoring them. In this paper, the different types of common degraded areas in the Canary Islands are identified, as well as the proposed solutions for remediation, such as afforestation of agricultural land or landfill closure and restoration

    Spin Channels in Functionalized Graphene Nanoribbons

    Full text link
    We characterize the transport properties of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects and vacancies. We find that the edge metallic states are preserved under a variety of chemical environments, while bulk conducting channels can be easily destroyed by either hydrogenation or ion or electron beams, resulting in devices that can exhibit spin conductance polarization close to unity.Comment: 14 pages, 5 figure

    Fifth European Dirofilaria and Angiostrongylus Days (FiEDAD) 2016

    Get PDF
    Peer reviewe

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
    corecore